\qquad

LINEAR EQUATIONS IN TWO VARIABLES 8.2

Vocab:

- $2 x-y=5$ is an example of an equation in two \qquad ـ.
- The \qquad of an equation in x and y is an ordered pair (\qquad) that produces a true statement when the \qquad of x and y are substituted into the equation.

Example 1: Checking Solutions -- You can check to see if an ordered pair is a
\qquad by substituting in the x and y value into the equation. Check to see if it makes a true statement.

1. Tell whether the ordered pair is a solution of $2 x-y=5$
a. $(1,-3)$
b. $(4,7)$

Example 2: Graphing a Linear Equation -- If you graph solutions of the equation in two variables and the graph forms a \qquad then the equation is called a linear equation.

1. Graph $y=2 x-1$

Step 1: Make a table of solutions:

\mathbf{x}					
\mathbf{y}					

Step 2: Choose 2 negative numbers, zero, and 2 positive numbers for x.

Step 3: Substitute your values for x in the equation to find each y value.

Step 4: List the solutions as ordered pairs: \qquad

Step 5: Graph the ordered pairs. Connect the points. This line is the graph of $y=2 x-1$

Example 3: Graphing Horizontal and Vertical Lines

1. Graph $y=3$ and $x=-2$
a. The graph of the equation $y=3$ is a \qquad line through (0,3). It means that no matter what value x equals, y will always be 3 .

b. The graph of the equation $x=-2$ is a \qquad line through (-2, 0). It means that no matter what value y equals, x will always be -2 .

Example 4: Writing an Equation in Function Form -- Function form is when an equation is solved for \qquad It is helpful to put an equation in function form before graphing it. In general, a linear equation is a function unless its graph is a \qquad line. (Ex. 3, b.)

1. Write $x+2 y=6$ in function form. Then graph the equation.
a. Step 1: Solve for y
b. Step 2: To graph, use its function form to make a table of solutions. Then graph the points from the table and draw a line through the points.

\mathbf{x}					
\mathbf{y}					

1. Tell whether the ordered pair is a solution of $3 x+2 y=-8$
a. $(0,4)$
b. $(-2,-1)$
c. ($10,-19$)
2. Graph the equations:
a. $y=2 x$

\mathbf{x}					
\mathbf{y}					

b. $y=-x+3$

\mathbf{x}					
\mathbf{y}					

c. $y=\frac{1}{2} x+1$

\mathbf{x}					
\mathbf{y}					

USING INTERCEPTS 8.3

Vocab:

1. x-intercept: the x-coordinate of a point where the \qquad crosses the \qquad -axis
2. y-intercept: the y-coordinate of a point where the \qquad crosses the \qquad -axis
*In the graph, $2 x-3 y=-12$ is graphed. Where it crosses the x -axis is the x-intercept and where it crosses the y-axis is the y-intercept.

** Finding Intercepts **

| To find the
 x-intercept: | Substitute___ in for y in the equation and solve for |
| :--- | :--- | :--- |
| To find the
 y-intercept: | Substitute ___ in for x in the equation and solve for |

Example 1: Finding Intercepts of a Graph

1. Find the intercepts of the graph of $3 x-2 y=6$
a. To find the x-intercept, let $y=0$ and solve for x

Step 1: Write the equation

Step 2: Substitute 0 for y

Step 3: Solve for x

Step 4: The x-intercept is \qquad
b. To find the y-intercept, let $x=0$ and solve for y

Step 1: Write the equation

Step 2: Substitute 0 for x

Step 3: Solve for y

Step 4: The y-intercept is \qquad

1. Graph the equation $3 x-2 y=6$ from Example 1 .

The x-intercept is \qquad so plot the point (\qquad)

The y-intercept is \qquad , so plot the point (\qquad)

Draw a line through the points.

Example 3: Writing and Graphing an Equation -- You are canoeing along a 12 mile stretch of river. You travel 4 miles per hour when paddling and 2 miles per hour when drifting. Write and graph an equation describing your possible paddling and drifting times for the trip. Give 3 possible combinations of paddling and drifting times.

1. To write an equation, let x be the paddling time and y be the drifting time. Let's see it written verbally:

Paddling distance
$\begin{array}{cccc}\text { paddling • paddling } \\ \text { rate } & +\underset{\text { time }}{\text { driving }} \quad \underset{\text { rate }}{\text { drifting }} \quad= & \text { total }\end{array}$

Drifting distance

Now write an equation from this: \qquad
2. To graph the equation, find and use the intercepts:

Find the x-intercept:

$$
4 x+2 y=12
$$

Find the y-intercept:
$4 x+2 y=12$
3. Three points on the graph are
 (______) -- not paddle at all and drift for 6 hours
(___,___) -- paddle for 2 hours and drift for 2 hours
(___,__) -- paddle for 3 hours and not drift at all

Practice:

1. Find the intercepts of the equations graph. Then graph the equation.
a. $x-2 y=-2$

b. $4 x+3 y=12$

c. $y=-2 x-8$

