PA Notes Week 10: 8.2 / 8.3 Name: _____

LINEAR EQUATIONS IN TWO VARIABLES 8.2

Vocab:

- 2x - y = 5 is an example of an equation in two ______.

- The ______ of an equation in x and y is an ordered pair (_____, ____) that

produces a true statement when the ______ of x and y are substituted into the

equation.

Example 1: Checking Solutions -- You can check to see if an ordered pair is a

______ by substituting in the x and y value into the equation. Check to see if it makes a true statement.

- 1. Tell whether the ordered pair is a solution of 2x y = 5
 - a. (1,-3) b. (4,7)

Example 2: Graphing a Linear Equation -- If you graph solutions of the equation in two

variables and the graph forms a _____, then the equation is called a **linear equation**.

1. Graph y = 2x - 1

Step 1: Make a table of solutions:

x			
У			

Step 2: Choose 2 negative numbers, zero, and 2 positive numbers for x.

Step 3: Substitute your values for x in the equation to find each y value.

Step 4: List the solutions as ordered pairs: _____

Step 5: Graph the ordered pairs. Connect the points. This line is the graph of y = 2x - 1

Example 3: Graphing Horizontal and Vertical Lines

- 1. Graph y = 3 and x = -2
 - a. The graph of the equation y = 3
 - is a _____ line through
 - (0,3). It means that no matter what value x equals, y will always be 3.

b. The graph of the equation x = -2is a _____ line through

(-2,0). It means that no matter what

value y equals, x will always be -2.

Example 4: Writing an Equation in Function Form -- Function form is when an equation is solved for _____. It is helpful to put an equation in function form before graphing it. In general, a linear equation is a function **unless** its graph is a ______ line. (Ex. 3, b.)

- 1. Write x + 2y = 6 in function form. Then graph the equation.
 - a. Step 1: Solve for y

 b. Step 2: To graph, use its function form to make a table of solutions. Then graph the points from the table and draw a line through the points.

x			
У			

Practice:

- 1. Tell whether the ordered pair is a solution of 3x + 2y = -8
 - a. (0,4) b. (-2,-1) c. (10,-19)
- 2. Graph the equations:
 - a. y = 2x

x			
У			

b.
$$y = -x + 3$$

х			
У			

c.
$$y = \frac{1}{2}x + 1$$

х			
У			

USING INTERCEPTS 8.3

Vocab:

- 1. x-intercept: the x-coordinate of a point where the _____ crosses the _____axis
- 2. y-intercept: the y-coordinate of a point where the _____ crosses the ____-axis
 - * In the graph, 2x 3y = -12 is graphed. Where it crosses the <u>x-axis</u> is the <u>x-intercept</u> and where it crosses the <u>y-axis</u> is the <u>y-intercept</u>.

** Finding Intercepts **

To find the x-intercept:	Substitute in for y in the equation and solve for
To find the y-intercept:	Substitute in for x in the equation and solve for

Example 1: Finding Intercepts of a Graph

- 1. Find the intercepts of the graph of 3x 2y = 6
 - a. To find the x-intercept, let y = 0 and solve for x

Step 1: Write the equation

Step 2: Substitute 0 for y

Step 3: Solve for x

Step 4: The x-intercept is _____

b. To find the y-intercept, let x = 0 and solve for y

Step 1: Write the equation

Step 2: Substitute 0 for x

Step 3: Solve for y

Step 4: The y-intercept is _____

Example 2: Using Intercepts to Graph a Linear Equation

Example 3: Writing and Graphing an Equation -- You are canoeing along a 12 mile stretch of river. You travel 4 miles per hour when paddling and 2 miles per hour when drifting. Write and graph an equation describing your possible paddling and drifting times for the trip. Give 3 possible combinations of paddling and drifting times.

1. To write an equation, let x be the paddling time and y be the drifting time. Let's see it written verbally:

<u>Paddlir</u>	ng d		<u>Drift</u>								
paddling	•	paddling	+	С	driving	•	drifting			=	total
rate		time			rate	5		time			distance

Now write an equation from this: _____

2. To graph the equation, find and use the intercepts:

Find the x-intercept:	Find the y-intercept:
4x + 2 y = 12	4 x + 2y = 12
Three points on the graph ar	e

3.

(____, ____) -- not paddle at all and drift for 6 hours

(____, ___) -- paddle for 2 hours and drift for 2 hours

(____, ___) -- paddle for 3 hours and not drift at all

Practice:

1. Find the intercepts of the equations graph. Then graph the equation.

a. x - 2y = -2

	-							_	_					
	[
	t t													
	t t	_												
	ŀ	-												
	ŀ	-												
	ŀ	-	\square											
	ŀ	_												-
	ŀ				_	_		_						
	ŀ	_												
	I													
	1													
	1													
	ŀ													
	ŀ	_												
	ŀ	-												
┝┿┽╪╪╪╪╪╋┇╗	ŀ	-												
┝┽┼┾┼┼┼┼╋┼┼┼┼┼┼┼	ŀ	_												
	ŀ	_												
	L													

b. 4x + 3y = 12

					_						
											\square
\vdash	\square										Н
\vdash											Н
L 1											
								-			

c.
$$y = -2x - 8$$

					_				 	
H										
\vdash										
\vdash										
-										
Ш										
\vdash										
\vdash										
\vdash										